Please check the examination details below before entering your candidate information

Candidate surname	Other names

Pearson Edexcel International GCSE

Monday 7 January 2019

Morning (Time: 1 hour 30 minutes)	Paper Reference 4MB0/01

Mathematics B
Paper 1

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

Answer ALL TWENTY EIGHT questions．

Write your answers in the spaces provided．
You must write down all the stages in your working．

1 In 1924 the 100 metre world record for men was 10.40 seconds． In 2010 it was 9.58 seconds．

Calculate，to 3 significant figures，the percentage decrease in this world record between 1924 and 2010.
$3 y=4 x^{3}-\frac{2}{x}$
Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

4 Find the Highest Common Factor (HCF) of 72, 120 and 264
Show your working clearly.

5 John is going to draw a bar chart for the number of red apples and the number of green apples on the trees in his garden.

The height of the bar in the bar chart for the 28 green apples is 7 cm .
There are 50 red apples on the trees in John's garden.
Calculate the height of the bar in the bar chart for the red apples.

6 Find the least integer value of n such that $3 n+40 \geqslant 29$

7 Find the determinant of the matrix $\left(\begin{array}{rr}4 & -3 \\ 5 & 6\end{array}\right)$
(b) The mass of Mercury is $3.302 \times 10^{23} \mathrm{~kg}$.

The mass of Saturn is $5.685 \times 10^{26} \mathrm{~kg}$.
Given that the mass of Saturn $=k \times$ the mass of Mercury,
calculate, to 3 significant figures, the value of k.

$$
k=
$$

9 Without using a calculator, find the value of $\frac{\sqrt{12}+\sqrt{300}}{\sqrt{27}}$
Show your working clearly.

10 A bag of sweets contains only 5 green sweets and 3 yellow sweets.
Kate takes at random a sweet from the bag and eats it.
Kate then takes a second sweet from the bag and eats it.
Calculate the probability that Kate eats at least one green sweet.

11 Simplify fully $\frac{36 x y^{2}}{12 x^{5} y^{7}}$
$12 \quad \mathbf{A}=\left(\begin{array}{rrr}3 & 0 & 2 \\ 2 & -1 & 3 \\ 0 & 1 & -2\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{rr}4 & 3 \\ 2 & 1 \\ 0 & -2\end{array}\right)$
Calculate the matrix product $\mathbf{A B}$.

13 The circumference of the circular base of a right circular cone is $24 \pi \mathrm{~cm}$.
The height of the cone is 40 cm .
Calculate the volume, in cm^{3} to 3 significant figures, of the cone.
$14 a=2^{p}+1$
$b=2^{p}-1$

Show that $\frac{a}{b}$ can be written as $\frac{4^{p}+2^{p+1}+1}{4^{p}-1}$

Show your working clearly.
$15 \mathscr{E}=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}$
$B=\{1,3,5,7,9\}$
$C=\{2,3,5,7\}$
(a) List the elements of the set
(i) $B \cup C$
(ii) $A^{\prime} \cap C$
(iii) $(A \cap B)^{\prime}$
(b) Explain why $A \cap B \cap C=\varnothing$

16

Diagram NOT accurately drawn

The diagram shows quadrilateral $A B C D$.
$A D=B C=(x-4) \mathrm{cm}$
$D C=A B=(2 x+3) \mathrm{cm}$
$A C=\sqrt{5 x^{2}+4 x+25} \mathrm{~cm}$
Using algebra, show that $A B C D$ is a rectangle.

17 The 32 students in a class were each asked if they have a cat (C) or a $\operatorname{dog}(D)$ as a pet. Their answers showed that

8 students have both a cat and a dog
12 students have only a cat
11 students have a dog.
(a) Using this information, complete the Venn diagram to show the number of elements in each subset.

A student in the class is chosen at random.
(b) Find the probability that this student does not have a dog as a pet.
$18 B$ is inversely proportional to h^{3} $B=24$ when $h=4$

Find the value of h when $B=3$

19 Solve the simultaneous equations

$$
\begin{gathered}
x+2 y=-4 \\
7 x-y=11
\end{gathered}
$$

Show clear algebraic working.

20 The table gives information about the results of a survey of the ages, x years, of 125 members of a dance school.

Age (x years)	$2<x \leqslant 7$	$7<x \leqslant 13$	$13<x \leqslant 20$	$20<x \leqslant 40$
Frequency	30	40	30	25

Calculate an estimate for the mean age, to the nearest year, of these members of the dance school.
years

21
a $\left(\begin{array}{cc}3 x & 3 \\ 6\end{array}\right)$
b $\quad\binom{x+2}{0.5}$
$\mathbf{a}=k \mathbf{b}$, where k is a scalar.
Find the value of x.
$22 D$ and E are two similar cuboids.
D has surface area $240 \mathrm{~cm}^{2}$ and volume $600 \mathrm{~cm}^{3}$
E has surface area $1500 \mathrm{~cm}^{2}$
Calculate the volume of E.
$23 A, B$ and C are three numbers such that

$$
A: B: C=(2 x+1): 5:(x-1)
$$

and

$$
A+B+C=20 x+65
$$

Given that $B=40$, find the value of x.

Diagram NOT accurately drawn

The diagram shows a regular pentagon $A B C D E$, an isosceles triangle $B C Q$ and five sides of a regular polygon.
$\angle B C Q=42^{\circ}$
$P A, A B$ and $B Q$ are three sides of a regular polygon that has n sides.
Find the value of n.

25

The diagram shows triangle $A B C$ and triangle $D E F$.
The area of triangle $A B C$ is equal to the area of triangle $D E F$.
Calculate the value of x.

The diagram shows the trapezium $A B C D$ in which $A B=D C$.
(a) Showing all your construction lines, construct
(i) the perpendicular bisector of $C D$,
(ii) the locus of all points inside the trapezium that are equidistant from $B A$ and $B C$.

The region R consists of all the points inside the trapezium that are closer to $B C$ than to $B A$, closer to C than to D and less than 6 cm from D.
(b) Show, by shading, the region R.

Label the region R.

27

Diagram NOT accurately drawn

The diagram shows a building in which the owner is proposing to install a zip line.
The building is in the shape of a cuboid, $A B C D E F G H$.
$A B=2 C F$
$B C=60 \mathrm{~m}$
The volume of the cuboid is $27000 \mathrm{~m}^{3}$
The zip line will run diagonally in a straight line from A to F.
To be safe, the zip line must be no longer than 70 m in length and the size of angle $F A C$ must not be greater than 14°

Show that the owner can safely install a zip line.

Question 27 continued
$28(x+2)$ is a factor of $6 x^{3}-x^{2}+k x-10$, where k is a constant.
(a) Show that $k=-31$

